Utilizando los prefijos del sistema internacional. es posible definir unidades de longitud que son múltiplos o submúltiplos del metro. A partir del metro se definen unas unidades de medida mayores, llamadas múltiplos del metro, como kilómetro (km), hectómetro (hm) y decámetro (dam), y otras menores, denominadas submúltiplos del metro, como decímetro (dm), centímetro (cm) y milímetro (mm).
Problemas de aplicación
Como nos piden que respondamos en metros, pasaremos ambas distancias a metros.
Vemos que para pasar de hm y dam a metros, la flecha va hacia abajo, por lo que hay que multiplicar. Así:
Como 1 hm = 100 m… Entonces 3,7 hm = 3,7 x 100 m = 370 m
Como 1 dam= 10 m… Entonces 8,5 dam = 8,5 x 10 = 85 m
Ahora sí podemos sumar:
370 m + 85 m = 455 m
También debemos expresar el resultado en km. Fijándonos en la tabla, vemos que desde los metros a los km la flecha va hacia arriba, por lo que hay que dividir:
Como 1 km = 1000 m… Entonces 455 m = 455:1000 km = 0,455 km
Por lo tanto, la respuesta a este problema es:
455 metros, o, lo que es lo mismo, 0,455 kilómetros
Para saber qué longitud tiene ahora su melena, debemos restar las longitudes, pero lo primero es convertirlas a la misma unidad. Como de dm a cm hay que bajar, tenemos que multiplicar:
Como 1 dm = 10 cm… Entonces 6 dm = 6 x 10 cm = 60 cm
Ahora restamos:
60 cm – 25 cm = 35 cm
Para expresar la respuesta en mm, también tenemos que bajar, es decir, multiplicar:
Como 1 cm = 10 mm… Entonces 35 cm = 35 x 10 mm = 350 mm
Por lo tanto, la respuesta a este problema es:
35 centímetros, o, lo que es lo mismo, 350 milímetros
3. Un oso al que le encanta la miel quiere sacar miel de una colmena que hay en la rama de un árbol, pero está demasiado alta. Para alcanzarla, se sube en una roca de 12 dm de alto que hay justo debajo y, con las garras muy estiradas, llega justo a cogerla. Si este oso cuando se estira mide exactamente 2,3 m, ¿a qué distancia del suelo estaba exactamente la colmena?
Para resolverlo es necesario sumar las dos distancias. En este problema no nos dicen las unidades que debemos utilizar, así que podemos expresar el resultado en la unidad que mejor nos parezca. Elegiremos los metros:
Pasamos los dm a m (como en la escala hay que subir, tendremos que dividir entre 10):
Como 1 m = 10 dm … Entonces 12 dm = 1,2 m
Ahora sumamos:
1,2 + 2,3 = 3,5 m
Por lo tanto, la respuesta a este problema es:
3,5 metros
No hay comentarios.:
Publicar un comentario